3ème Tech

Devoir de Maison N°2

Exercice \mathcal{N} °1:

On considère la fonction f_m définie sur IR par : $f_m(x) = (m-3)x^2 - mx + 4 - 2m$.

Soit (ζ_m) sa courbe représentative dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1-/ Montrer que, les courbes (ζ_m) passe par deux points fixes A et B, qu'on déterminera.
- 2-/ Etudier le sens de variation de f_m suivant les valeurs du paramètre m.
- 3-/ Déterminer m pour que (ζ_m) soit une parabole ayant pour sommet le point S(-1,1).
- 4-/ On prend m=2; on obtient la fonction $f: x \mapsto -x^2 2x$.
 - a) Dresser le tableau de variation de f. Et tracer (ζ_2) .
 - c) Existe-t-il des tangentes à (ζ_2) perpendiculaires, à la droite Δ d'équation : $y = -\frac{1}{6}x + 5$.
 - d) Déterminer suivant les valeurs de a, le nombre de points d'intersection de (ζ_2) et de la droite $D_a: y = ax a 3$ (a est un réel donné)
- 5-/ Résoudre graphiquement l'inéquation : $(x-4-y)(y+x^2+2x) \le 0$.
- 6-/ Soit la fonction h définie sur IR par $h(x) = x^2 + 2|x|$.

Montrer que h est paire. Construire (ζ_2') à partir de (ζ_2) .

Exercice $\mathcal{N}^{\circ}2$:

Soit la fonction f_m définie sur $IR \setminus \{1\}$ par : $f_m(x) = \frac{x^2 + mx + 4}{x - 1}$.

Soit (ζ_m) sa courbe représentative dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1-/ a)Montrer que pour tout $x \in IR \setminus \{1\}$; $f_m'(x) = \frac{x^2 2x m 4}{(x 1)^2}$.
 - b) Etudier le sens de variation de f_m suivant les valeurs de m.
- 2-/ a) Déterminer m pour que f_m admette un extremum en 2.
 - b) Déterminer m pour que f_m n'admette pas d'extremum.

Exercice $\mathcal{N}^{\circ}3$:

Dans un plan P muni d'un repère orthonormé (O, i, j).

On considère les points A(-1,-3), B(2,1) et C(-1,1).

- 1-/ a) Calculer les distances CB et CA.
 - b) Calculer $\overrightarrow{CA}.\overrightarrow{CB}$. Que peut on dire du triangle ABC?
- 2-/ a) Chercher de deux manières $\overrightarrow{AB}.\overrightarrow{AC}$.
 - b) Déterminer alors $Cos(\overrightarrow{AB}, \overrightarrow{AC})$.
 - c) Soit $\Delta = \{ M \in P / \overrightarrow{AB}. \overrightarrow{AM} = 4 \}$.

Déterminer l'ensemble Δ et donner son équation cartésienne.

d) Calculer $d(A, \Delta)$.